Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Apple Researchers Introduce A Groundbreaking Artificial Intelligence Approach to Dense 3D Reconstruction from Dynamically-Posed RGB Images

October 31, 2023
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


With learnt priors, RGB-only reconstruction with a monocular camera has made significant strides toward resolving the issues of low-texture areas and the inherent ambiguity of image-based reconstruction. Practical solutions for real-time execution have garnered considerable attention, as they are essential for interactive applications on mobile devices. Nevertheless, a crucial prerequisite yet to be considered in current cutting-edge reconstruction systems is that a successful approach must be both online and real-time. 

To operate online, an algorithm must generate precise incremental reconstructions during picture capture, relying solely on historical and current observations at every time interval. This issue breaks an important premise of previous efforts: each view has an exact, fully optimized posture estimate. Rather, pose drift occurs in a simultaneous localization and mapping (SLAM) system under real-world scanning conditions, leading to a stream of dynamic pose estimations. Previous poses are updated due to pose graph optimization and loop closure. Such posture updates from SLAM are common in online scanning. 

As shown in Figure 1, the reconstruction must maintain its agreement with the SLAM system by honouring these changes. However, recent efforts on dense RGB-only reconstruction have yet to address the dynamic character of camera pose estimations in online applications. Despite significant advancements in reconstruction quality, these initiatives have not explicitly addressed dynamic poses and have maintained the conventional-issue formulation of statically-posed input pictures. On the other hand, they concede that these updates exist and provide a way to integrate posture update management into current RGB-only techniques. 

\"\"/

Figure 1: Pose data from a SLAM system (a, b) may be updated (c, red-green) in live 3D reconstruction. Our posture update management technique generates globally consistent and accurate reconstructions, whereas ignoring these changes results in incorrect geometry.

They are influenced by BundleFusion, an RGB-D technique that uses a linear update algorithm to integrate new views into the scene. This allows for the de-integration of older views and their re-integration upon the availability of an updated position. This study suggests managing posture changes in live reconstruction from RGB pictures using de-integration as a generic framework. Three sample RGB-only reconstruction techniques with static posture assumptions are studied. To overcome the constraints of each approach in the online scenario. 

Specifically, researchers from Apple and the University of California, Santa Barbara provide a unique deep learning-based non-linear de-integration technique to facilitate online reconstruction for techniques like NeuralRecon, which relies on a learned non-linear updating rule. They present a fresh and unique dataset called LivePose, which contains entire, dynamic posture sequences for ScanNet, built using BundleFusion, to verify this technology and facilitate future study. The efficacy of the de-integration strategy is exhibited in tests, which reveal qualitative and quantitative improvements in three cutting-edge systems about important reconstruction measures. Engagements. 

Their principal contributions are: • They provide and define a novel vision job that more closely mimics the real-world environment for mobile interactive applications: dense online 3D reconstruction from dynamically-posed RGB pictures. • They released LivePose, the first dynamic SLAM posture estimate dataset made accessible to the public. It includes the whole SLAM pose stream for each of the 1,613 scans in the ScanNet dataset. • To facilitate rebuilding with dynamic postures, they create innovative training and assessment methods. • They suggest a unique recurrent de-integration module that eliminates outdated scene material to enable dynamic-position handling for techniques with learnt, recurrent view integration. This module teaches how to manage pose changes.

Check out the Paper. All Credit For This Research Goes To the Researchers on This Project. Also, don’t forget to join our 32k+ ML SubReddit, 40k+ Facebook Community, Discord Channel, and Email Newsletter, where we share the latest AI research news, cool AI projects, and more.

If you like our work, you will love our newsletter..

We are also on Telegram and WhatsApp.

\"\"

Aneesh Tickoo is a consulting intern at MarktechPost. He is currently pursuing his undergraduate degree in Data Science and Artificial Intelligence from the Indian Institute of Technology(IIT), Bhilai. He spends most of his time working on projects aimed at harnessing the power of machine learning. His research interest is image processing and is passionate about building solutions around it. He loves to connect with people and collaborate on interesting projects.

🔥 Meet Retouch4me: A Family of Artificial Intelligence-Powered Plug-Ins for Photography Retouching



Source link

Tags: AppleApproachartificialDenseDynamicallyPosedGroundbreakingImagesintelligenceIntroduceReconstructionResearchersRGB
Previous Post

Upcoming Changes for CSP-SaaS Partners on Cloud Partner Navigator – VMware Cloud Provider Blog

Next Post

Preparing For AI’s Impact

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Preparing For AI’s Impact

Preparing For AI's Impact

A Primer on Statistical Inference

A Primer on Statistical Inference

Automation technology to boost Japan’s logistics industry

Automation technology to boost Japan’s logistics industry

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In