Saturday, June 28, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Achieving Structured Reasoning with LLMs in Chaotic Contexts with Thread of Thought Prompting and Parallel Knowledge Graph Retrieval | by Anthony Alcaraz | Nov, 2023

November 18, 2023
in AI Technology
Reading Time: 3 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Towards Data Science

Large language models (LLMs) demonstrated impressive few-shot learning capabilities, rapidly adapting to new tasks with just a handful of examples.

However, despite their advances, LLMs still face limitations in complex reasoning involving chaotic contexts overloaded with disjoint facts. To address this challenge, researchers have explored techniques like chain-of-thought prompting that guide models to incrementally analyze information. Yet on their own, these methods struggle to fully capture all critical details across vast contexts.

This article proposes a technique combining Thread-of-Thought (ToT) prompting with a Retrieval Augmented Generation (RAG) framework accessing multiple knowledge graphs in parallel. While ToT acts as the reasoning “backbone” that structures thinking, the RAG system broadens available knowledge to fill gaps. Parallel querying of diverse information sources improves efficiency and coverage compared to sequential retrieval. Together, this framework aims to enhance LLMs’ understanding and problem-solving abilities in chaotic contexts, moving closer to human cognition.

We begin by outlining the need for structured reasoning in chaotic environments where both relevant and irrelevant facts intermix. Next, we introduce the RAG system design and how it expands an LLM’s accessible knowledge. We then explain integrating ToT prompting to methodically guide the LLM through step-wise analysis. Finally, we discuss optimization strategies like parallel retrieval to efficiently query multiple knowledge sources concurrently.

Through both conceptual explanation and Python code samples, this article illuminates a novel technique to orchestrate an LLM’s strengths with complementary external knowledge. Creative integrations such as this highlight promising directions for overcoming inherent model limitations and advancing AI reasoning abilities. The proposed approach aims to provide a generalizable framework amenable to further enhancement as LLMs and knowledge bases evolve.



Source link

Tags: AchievingAlcarazAnthonyChaoticContextsgraphKnowledgeLLMsNovParallelpromptingReasoningretrievalStructuredThoughtThread
Previous Post

The History of Open-Source LLMs: Better Base Models (Part Two) | by Cameron R. Wolfe, Ph.D. | Nov, 2023

Next Post

How Data Science & AI Changed Gaming Industry | Artificial Intelligence | Data Science | @SCALER

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
How Data Science & AI Changed Gaming Industry | Artificial Intelligence | Data Science | @SCALER

How Data Science & AI Changed Gaming Industry | Artificial Intelligence | Data Science | @SCALER

Automation Campaign | EXTREME DIFFICULTY 100x | Luxury Cars (4)

Automation Campaign | EXTREME DIFFICULTY 100x | Luxury Cars (4)

1 Year of Coding #programming #comedy #coding

1 Year of Coding #programming #comedy #coding

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
How ‘Chain of Thought’ Makes Transformers Smarter

How ‘Chain of Thought’ Makes Transformers Smarter

May 13, 2024
Amazon’s Bedrock and Titan Generative AI Services Enter General Availability

Amazon’s Bedrock and Titan Generative AI Services Enter General Availability

October 2, 2023
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
The Importance of Choosing a Reliable Affiliate Network and Why Olavivo is Your Ideal Partner

The Importance of Choosing a Reliable Affiliate Network and Why Olavivo is Your Ideal Partner

October 30, 2023
Managing PDFs in Node.js with pdf-lib

Managing PDFs in Node.js with pdf-lib

November 16, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In