Friday, May 9, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

A New AI Approach for Estimating Causal Effects Using Neural Networks

April 27, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Have you ever wondered how we can determine the true impact of a particular intervention or treatment on certain outcomes? This is a crucial question in fields like medicine, economics, and social sciences, where understanding cause-and-effect relationships is essential. Researchers have been grappling with this challenge, known as the “Fundamental Problem of Causal Inference,” – when we observe an outcome, we typically don’t know what would have happened under an alternative intervention. This issue has led to the development of various indirect methods to estimate causal effects from observational data.

Some existing approaches include the S-Learner, which trains a single model with the treatment variable as a feature, and the T-Learner, which fits separate models for treated and untreated groups. However, these methods can suffer from issues like bias towards zero treatment effect (S-Learner) and data efficiency problems (T-Learner).

More sophisticated methods like TARNet, Dragonnet, and BCAUSS have emerged, leveraging the concept of representation learning with neural networks. These models typically consist of a pre-representation component that learns representations from the input data and a post-representation component that maps these representations to the desired output.

While these representation-based approaches have shown promising results, they often overlook a particular source of bias: spurious interactions (see Table 1) between variables within the model. But what exactly are spurious interactions, and why are they problematic? Imagine you’re trying to estimate the causal effect of a treatment on an outcome while considering various other factors (covariates) that might influence the outcome. In some cases, the neural network might detect and rely on interactions between variables that don’t actually have a causal relationship. These spurious interactions can act as correlational shortcuts, distorting the estimated causal effects, especially when data is limited.

To address this issue, researchers from the Universitat de Barcelona have proposed a novel method called Neural Networks with Causal Graph Constraints (NN-CGC). The core idea behind NN-CGC is to constrain the learned distribution of the neural network to better align with the causal model, effectively reducing the reliance on spurious interactions.

Here’s a simplified explanation of how NN-CGC works:

Variable Grouping: The input variables are divided into groups based on the causal graph (or expert knowledge if the causal graph is unavailable). Each group contains variables that are causally related to each other as shown in Figure 1.

Independent Causal Mechanisms: Each variable group is processed independently through a set of layers, modeling the Independent Causal Mechanisms for the outcome variable and its direct causes.

Constraining Interactions: By processing each variable group separately, NN-CGC ensures that the learned representations are free from spurious interactions between variables from different groups.

Post-representation: The outputs from the independent group representations are combined and passed through a linear layer to form the final representation. This final representation can then be fed into the output heads of existing architectures like TARNet, Dragonnet, or BCAUSS.

By incorporating causal constraints in this manner, NN-CGC aims to mitigate the bias introduced by spurious variable interactions, leading to more accurate causal effect estimations.

The researchers evaluated NN-CGC on various synthetic and semi-synthetic benchmarks, including the well-known IHDP and JOBS datasets. The results are quite promising: across multiple scenarios and metrics (like PEHE and ATE), the constrained versions of TARNet, Dragonnet, and BCAUSS (combined with NN-CGC) consistently outperformed their unconstrained counterparts, achieving new state-of-the-art performance.

One interesting observation is that in high-noise environments, the unconstrained models sometimes performed better than the constrained ones. This suggests that in such cases, the constraints might be discarding some causally valid information alongside the spurious interactions.

Overall, NN-CGC presents a novel and flexible approach to incorporating causal information into neural networks for causal effect estimation. By addressing the often-overlooked issue of spurious interactions, it demonstrates significant improvements over existing methods. The researchers have made their code openly available, allowing others to build upon and refine this promising technique.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter.

Don’t Forget to join our 40k+ ML SubReddit

Vineet Kumar is a consulting intern at MarktechPost. He is currently pursuing his BS from the Indian Institute of Technology(IIT), Kanpur. He is a Machine Learning enthusiast. He is passionate about research and the latest advancements in Deep Learning, Computer Vision, and related fields.

🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



Source link

Tags: ApproachCausaleffectsEstimatingnetworksNeural
Previous Post

Exxon’s steady spending has widened gap with Chevron that could grow – WSJ (NYSE:XOM)

Next Post

Integrating Large Language Models with Graph Machine Learning: A Comprehensive Review

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Integrating Large Language Models with Graph Machine Learning: A Comprehensive Review

Integrating Large Language Models with Graph Machine Learning: A Comprehensive Review

John Deaton Files Amicus Brief in Support of Coinbase’s Appeal Against SEC

John Deaton Files Amicus Brief in Support of Coinbase's Appeal Against SEC

Yes Bank Q4 profit doubles to Rs 452 cr, reports higher stress in unsecured advances

Yes Bank Q4 profit doubles to Rs 452 cr, reports higher stress in unsecured advances

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In