Sunday, June 8, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Meet Eureka: A Human-Level Reward Design Algorithm Powered by Large Language Model LLMs

October 28, 2023
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Large Language Models (LLMs) are great at high-level planning but need to help master low-level tasks like pen spinning. However, a team of researchers from NVIDIA, UPenn, Caltech, and UT Austin have developed an algorithm called EUREKA that uses advanced LLMs, such as GPT-4, to create reward functions for complex skill acquisition through reinforcement learning. EUREKA outperforms human-engineered rewards by providing safer and higher-quality tips through gradient-free, in-context learning based on human feedback. This breakthrough paves the way for LLM-powered skill acquisition, as demonstrated by the simulated Shadow Hand mastering pen spinning tricks.

Reward engineering in reinforcement learning has posed challenges, with existing methods like manual trial-and-error and inverse reinforcement learning needing more scalability and adaptability. EUREKA introduces an approach by utilising LLMs to generate interpretable reward codes, enhancing rewards in real-time. While previous works have explored LLMs for decision-making, EUREKA is groundbreaking in its application to low-level skill-learning tasks, pioneering evolutionary algorithms with LLMs for reward design without initial candidates or few-shot prompting.

LLMs excel in high-level planning but need help with low-level skills like pen spinning. Reward design in reinforcement learning often relies on time-consuming trial and error. Their study presents EUREKA leveraging advanced coding LLMs, such as GPT-4, to create reward functions for various tasks autonomously, outperforming human-engineered rewards in diverse environments. EUREKA also enables in-context learning from human feedback, enhancing reward quality and safety. It addresses the challenge of dexterous manipulation tasks unattainable through manual reward engineering.

EUREKA, an algorithm powered by LLMs like GPT-4, autonomously generates reward functions, excelling in 29 RL environments. It employs in-context learning from human feedback (RLHF) to enhance reward quality and safety without model updates. EUREKA’s rewards enable training a simulated Shadow Hand in pen spinning and rapid pen manipulation. It pioneers evolutionary algorithms with LLMs for reward design, eliminating the need for initial candidates or few-shot prompting, marking a significant advancement in reinforcement learning.

EUREKA outperforms L2R, showcasing its reward generation expressiveness. EUREKA consistently improves, with its best rewards eventually surpassing human benchmarks. It creates unique rewards weakly correlated with human ones, potentially uncovering counterintuitive design principles. Reward reflection enhances performance in higher-dimensional tasks. Together with curriculum learning, EUREKA succeeds in dexterous pen-spinning tasks using a simulated Shadow Hand.

EUREKA, a reward design algorithm driven by LLMs, attains human-level reward generation, excelling in 83% of tasks with an average of 52% improvement. Combining LLMs with evolutionary algorithms proves a versatile and scalable approach for reward design in challenging, open-ended problems. EUREKA’s success in dexterity is evident in solving complex tasks, such as dexterous pen spinning, using curriculum learning. Its adaptability and substantial performance enhancements are promising for diverse reinforcement learning and reward design applications.

Future research avenues include evaluating EUREKA’s adaptability and performance in more diverse and complex environments and with different robot designs. Assessing its real-world applicability beyond simulation is crucial. Exploring synergies with reinforcement learning techniques, like model-based methods or meta-learning, could further enhance EUREKA’s capabilities. Investigating the interpretability of EUREKA’s generated reward functions is essential for understanding its underlying decision-making processes. Enhancing human feedback integration and exploring EUREKA’s potential in various domains beyond robotics are promising directions.

Check out the Paper. All Credit For This Research Goes To the Researchers on This Project. Also, don’t forget to join our 32k+ ML SubReddit, 40k+ Facebook Community, Discord Channel, and Email Newsletter, where we share the latest AI research news, cool AI projects, and more.

If you like our work, you will love our newsletter..

We are also on WhatsApp. Join our AI Channel on Whatsapp..

Hello, My name is Adnan Hassan. I am a consulting intern at Marktechpost and soon to be a management trainee at American Express. I am currently pursuing a dual degree at the Indian Institute of Technology, Kharagpur. I am passionate about technology and want to create new products that make a difference.

🔥 Meet Retouch4me: A Family of Artificial Intelligence-Powered Plug-Ins for Photography Retouching



Source link

Tags: AlgorithmDesignEurekaHumanLevellanguageLargeLLMsMeetmodelPoweredReward
Previous Post

5 HUGE Digital Marketing Trends To Watch In 2022

Next Post

AC Repair Plano: Common AC Problems and How to Fix Them

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
AC Repair Plano: Common AC Problems and How to Fix Them

AC Repair Plano: Common AC Problems and How to Fix Them

How to Choose Furniture That Elevates Your Space

How to Choose Furniture That Elevates Your Space

A Guide to Using MSSQL with Node.js — SitePoint

A Guide to Using MSSQL with Node.js — SitePoint

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
Managing PDFs in Node.js with pdf-lib

Managing PDFs in Node.js with pdf-lib

November 16, 2023
Accenture creates a regulatory document authoring solution using AWS generative AI services

Accenture creates a regulatory document authoring solution using AWS generative AI services

February 6, 2024
Salesforce AI Introduces Moira: A Cutting-Edge Time Series Foundation Model Offering Universal Forecasting Capabilities

Salesforce AI Introduces Moira: A Cutting-Edge Time Series Foundation Model Offering Universal Forecasting Capabilities

April 3, 2024
The Importance of Choosing a Reliable Affiliate Network and Why Olavivo is Your Ideal Partner

The Importance of Choosing a Reliable Affiliate Network and Why Olavivo is Your Ideal Partner

October 30, 2023
Programming Language Tier List

Programming Language Tier List

November 9, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In