Saturday, June 21, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Overcoming Gradient Inversion Challenges in Federated Learning: The DAGER Algorithm for Exact Text Reconstruction

May 28, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Federated learning enables collaborative model training by aggregating gradients from multiple clients, thus preserving their private data. However, gradient inversion attacks can compromise this privacy by reconstructing the original data from the shared gradients. While effective on image data, these attacks need help with text due to their discrete nature, leading to only approximate recovery of small batches and short sequences. This challenges LLMs in sensitive fields like law and medicine, where privacy is crucial. Despite federated learning’s promise, its privacy guarantees are undermined by these gradient inversion attacks.

Researchers from INSAIT, Sofia University, ETH Zurich, and LogicStar.ai have developed DAGER, an algorithm that precisely recovers entire batches of input text. DAGER exploits the low-rank structure of self-attention layer gradients and the discrete nature of token embeddings to verify token sequences in client data, enabling exact batch recovery without prior knowledge. This method, effective for encoder and decoder architectures, uses heuristic search and greedy approaches, respectively. DAGER outperforms previous attacks in speed, scalability, and reconstruction quality, recovering batches up to size 128 on large language models like GPT-2, LLaMa-2, and BERT.

✅ [Featured Article] LLMWare.ai Selected for 2024 GitHub Accelerator: Enabling the Next Wave of Innovation in Enterprise RAG with Small Specialized Language Models

Gradient leakage attacks fall into two main types: honest-but-curious attacks, where the attacker passively observes federated learning updates, and malicious server attacks, where the attacker can modify the model. This paper focuses on the more challenging, honest-but-curious setting. Most research in this area targets image data, with text-based attacks typically requiring malicious adversaries or having limitations like short sequences and small batches. DAGER overcomes these limitations by supporting large batches and sequences for encoder and decoder transformers. It also works for token prediction and sentiment analysis without strong data priors, demonstrating exact reconstruction for transformer-based language models.

DAGER is an attack that recovers client input sequences from gradients shared in transformer-based language models, focusing on decoder-only models for simplicity. It leverages the rank deficiency of the gradient matrix of self-attention layers to reduce the search space of potential inputs. Initially, DAGER identifies correct client tokens at each position by filtering out incorrect embeddings using gradient subspace checks. Then, it recursively builds partial client sequences, verifying their correctness through subsequent self-attention layers. This two-stage process allows DAGER to reconstruct the full input sequences efficiently by progressively extending partial sequences with verified tokens.

The experimental evaluation of DAGER demonstrates its superior performance compared to previous methods in various settings. Tested on models like BERT, GPT-2, and Llama2-7B, and datasets such as CoLA, SST-2, Rotten Tomatoes, and ECHR, DAGER consistently outperformed TAG and LAMP. DAGER achieved near-perfect sequence reconstructions, significantly surpassing baselines in decoder- and encoder-based models. Its efficiency was highlighted by reduced computation times. The evaluation also confirmed DAGER’s robustness to long sequences and larger models, maintaining high ROUGE scores even for larger batch sizes, showcasing its scalability and effectiveness in diverse scenarios.

In conclusion, the embedding dimension limits DAGER’s performance on decoder-based models, and exact reconstructions are unachievable when the token count exceeds this dimension. Future research could explore DAGER’s resilience against defense mechanisms like DPSGD and its application to more complex FL protocols. For encoder-based models, large batch sizes pose computational challenges due to the growth of the search space, making exact reconstructions difficult. Future work should focus on heuristics to reduce the search space. DAGER highlights the vulnerability of decoder-based LLMs to data leakage, emphasizing the need for robust privacy measures in collaborative learning.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter.

Don’t Forget to join our 43k+ ML SubReddit

Sana Hassan, a consulting intern at Marktechpost and dual-degree student at IIT Madras, is passionate about applying technology and AI to address real-world challenges. With a keen interest in solving practical problems, he brings a fresh perspective to the intersection of AI and real-life solutions.

[Free AI Webinar] ‘How to Build Personalized Marketing Chatbots (Gemini vs LoRA)’.



Source link

Tags: AlgorithmchallengesDAGERExactfederatedgradientInversionLearningOvercomingReconstructionText
Previous Post

Inspirational Websites Roundup: Webflow Special #4

Next Post

Here’s How You Can Get More SEO Juice Out of Your Blog – TopRank® Marketing

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Here’s How You Can Get More SEO Juice Out of Your Blog – TopRank® Marketing

Here’s How You Can Get More SEO Juice Out of Your Blog – TopRank® Marketing

PFFR: REIT Preferreds ETF – Strong, Stable 7.9% Yield

PFFR: REIT Preferreds ETF - Strong, Stable 7.9% Yield

Future Trends in ChatGPT and Conversational AI

Future Trends in ChatGPT and Conversational AI

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
Managing PDFs in Node.js with pdf-lib

Managing PDFs in Node.js with pdf-lib

November 16, 2023
How ‘Chain of Thought’ Makes Transformers Smarter

How ‘Chain of Thought’ Makes Transformers Smarter

May 13, 2024
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
The Importance of Choosing a Reliable Affiliate Network and Why Olavivo is Your Ideal Partner

The Importance of Choosing a Reliable Affiliate Network and Why Olavivo is Your Ideal Partner

October 30, 2023
Best headless UI libraries in React Native

Best headless UI libraries in React Native

September 28, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In