Sunday, June 8, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Why Random Forests Dominate: Insights from the University of Cambridge’s Groundbreaking Machine Learning Research!

March 2, 2024
in Data Science & ML
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


In machine learning, the effectiveness of tree ensembles, such as random forests, has long been acknowledged. These ensembles, which pool the predictive power of multiple decision trees, stand out for their remarkable accuracy across various applications. This work, from researchers at the University of Cambridge, explains the mechanisms behind this success, offering a nuanced perspective that transcends traditional explanations focused on variance reduction.

Tree ensembles are likened to adaptive smoothers in this study, a conceptualization that illuminates their ability to self-regulate and adjust predictions according to the data’s complexity. This adaptability is central to their performance, enabling them to tackle the intricacies of data in ways that single trees cannot. The predictive accuracy of the ensemble is enhanced by moderating its smoothing based on the similarity between test inputs and training data.

\"\"

At the core of the ensemble’s methodology is the integration of randomness in tree construction, which acts as a form of regularization. This randomness is not arbitrary but a strategic component contributing to the ensemble’s robustness. Ensembles can diversify their predictions by introducing variability in the selection of features and samples, reducing the risk of overfitting and improving the model’s generalizability.

The empirical analysis presented in the research underscores the practical implications of these theoretical insights. The researchers detail how tree ensembles significantly reduce prediction variance through their adaptive smoothing technique. This is quantitatively demonstrated through comparisons with individual decision trees, with ensembles showing a marked improvement in predictive performance. Notably, the ensembles are shown to smooth out predictions and effectively handle noise in the data, enhancing their reliability and accuracy.

Further delving into the performance and results, the work presents compelling evidence of the ensemble’s superior performance through experiments. For instance, when tested across various datasets, the ensembles consistently exhibited lower error rates than individual trees. This was quantitatively validated through mean squared error (MSE) metrics, where ensembles significantly outperformed single trees. The study also highlights the ensemble’s ability to adjust its level of smoothing in response to the testing environment, a flexibility that contributes to its robustness.

What sets this study apart is its empirical findings and contribution to the conceptual understanding of tree ensembles. By framing ensembles as adaptive smoothers, the researchers from the University of Cambridge provide a fresh lens through which to view these powerful machine-learning tools. This perspective not only elucidates the internal workings of ensembles but also opens up new avenues for enhancing their design and implementation.

This work explores the effectiveness of tree ensembles in machine learning based on both theory and empirical evidence. The adaptive smoothing perspective offers a compelling explanation for the success of ensembles, highlighting their ability to self-regulate and adjust predictions in a way that single trees cannot. Incorporating randomness as a regularization technique further underscores the sophistication of ensembles, contributing to their enhanced predictive performance. Through a detailed analysis, the study not only reaffirms the value of tree ensembles but also enriches our understanding of their operational mechanisms, paving the way for future advancements in the field.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and Google News. Join our 38k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our Telegram Channel

You may also like our FREE AI Courses….

\"\"

Muhammad Athar Ganaie, a consulting intern at MarktechPost, is a proponent of Efficient Deep Learning, with a focus on Sparse Training. Pursuing an M.Sc. in Electrical Engineering, specializing in Software Engineering, he blends advanced technical knowledge with practical applications. His current endeavor is his thesis on “Improving Efficiency in Deep Reinforcement Learning,” showcasing his commitment to enhancing AI’s capabilities. Athar’s work stands at the intersection “Sparse Training in DNN’s” and “Deep Reinforcement Learning”.



Source link

Tags: CambridgesDominateForestsGroundbreakingInsightsLearningMachineRandomResearchUniversity
Previous Post

Pfizer, Gilead, Roche seen benefitting the most from antibody-drug conjugates

Next Post

I lost $11,300 to identity fraud. What I learned: Usual safeguards don’t work.

Related Posts

AI Compared: Which Assistant Is the Best?
Data Science & ML

AI Compared: Which Assistant Is the Best?

June 10, 2024
5 Machine Learning Models Explained in 5 Minutes
Data Science & ML

5 Machine Learning Models Explained in 5 Minutes

June 7, 2024
Cohere Picks Enterprise AI Needs Over ‘Abstract Concepts Like AGI’
Data Science & ML

Cohere Picks Enterprise AI Needs Over ‘Abstract Concepts Like AGI’

June 7, 2024
How to Learn Data Analytics – Dataquest
Data Science & ML

How to Learn Data Analytics – Dataquest

June 6, 2024
Adobe Terms Of Service Update Privacy Concerns
Data Science & ML

Adobe Terms Of Service Update Privacy Concerns

June 6, 2024
Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart
Data Science & ML

Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart

June 6, 2024
Next Post
I lost $11,300 to identity fraud. What I learned: Usual safeguards don’t work.

I lost $11,300 to identity fraud. What I learned: Usual safeguards don’t work.

Python Web Scraping Guide

Python Web Scraping Guide

Bitcoin Sees Record Inflows into Accumulation Addresses Despite Overheating Signals

Bitcoin Sees Record Inflows into Accumulation Addresses Despite Overheating Signals

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
Managing PDFs in Node.js with pdf-lib

Managing PDFs in Node.js with pdf-lib

November 16, 2023
Accenture creates a regulatory document authoring solution using AWS generative AI services

Accenture creates a regulatory document authoring solution using AWS generative AI services

February 6, 2024
Salesforce AI Introduces Moira: A Cutting-Edge Time Series Foundation Model Offering Universal Forecasting Capabilities

Salesforce AI Introduces Moira: A Cutting-Edge Time Series Foundation Model Offering Universal Forecasting Capabilities

April 3, 2024
The Importance of Choosing a Reliable Affiliate Network and Why Olavivo is Your Ideal Partner

The Importance of Choosing a Reliable Affiliate Network and Why Olavivo is Your Ideal Partner

October 30, 2023
Programming Language Tier List

Programming Language Tier List

November 9, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In